943 research outputs found

    Perfluorinated alkyl acids in the serum and follicular fluid of UK women with and without polycystic ovarian syndrome undergoing fertility treatment and associations with hormonal and metabolic parameters

    Get PDF
    © 2018 Women with polycystic ovarian syndrome (PCOS) undergoing treatment for infertility could be a sensitive subpopulation for endocrine effects of exposure to perfluorinated alkyl acids (PFAAs), persistent organic pollutants with potential endocrine activity. Women with, PCOS (n = 30) and age- and BMI-matched controls (n = 29) were recruited from a UK fertility clinic in 2015. Paired serum and follicular fluid samples were collected and analysed for 13 PFAAs. Sex steroid and thyroid hormones, and metabolic markers were measured and assessed for associations with serum PFAAs. Four PFAAs were detected in all serum and follicular fluid samples and concentrations in the two matrices were highly correlated (R2 > 0.95): perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). Serum PFOS was positively associated with age (1 ng/mL per yr, p < 0.05) and was higher in PCOS cases than controls (geometric mean [GM] 3.9 vs. 3.1 ng/mL, p < 0.05) and in women with irregular vs. regular menstrual cycles (GM 3.9 vs. 3.0 ng/mL, p = 0.01). After adjustment for confounders, serum testosterone was significantly associated with PFOA, PFHxS, PFNA, and the molar sum of the four frequently detected serum PFAAs (approximately 50 percent increase per ln-unit) among controls but not PCOS cases. HbA1c in PCOS cases was inversely associated with serum PFOA, PFHxs, and sum of PFAAs (2–3 mmol/mol per ln-unit). In controls, fasting glucose was positively associated with serum PFOA and sum of PFAAs (0.25 nmol/L per ln-unit increase in PFAAs). Few other associations were observed. The analyses and findings here should be considered exploratory in light of the relatively small sample sizes and large number of statistical comparisons conducted. However, the data do not suggest increased sensitivity to potential endocrine effects of PFAAs in PCOS patients

    Time-distance analysis of the emerging active region NOAA 10790

    Get PDF
    We investigate the emergence of Active Region NOAA 10790 by means of time – distance helioseismology. Shallow regions of increased sound speed at the location of increased magnetic activity are observed, with regions becoming deeper at the locations of sunspot pores. We also see a long-lasting region of decreased sound speed located underneath the region of the flux emergence, possibly relating to a temperature perturbation due to magnetic quenching of eddy diffusivity, or to a dense flux tube. We detect and track an object in the subsurface layers of the Sun characterised by increased sound speed which could be related to emerging magnetic-flux and thus obtain a provisional estimate of the speed of emergence of around 1 km s−1

    Instabilities in the Flux Line Lattice of Anisotropic Superconductors

    Full text link
    The stability of the flux line lattice has been investigated within anisotropic London theory. This is the first full-scale investigation of instabilities in the `chain' state. It has been found that the lattice is stable at large fields, but that instabilities occur as the field is reduced. The field at which these instabilities first arise, b∗(ϵ,θ)b^*(\epsilon,\theta), depends on the anisotropy ϵ\epsilon and the angle θ\theta at which the lattice is tilted away from the cc-axis. These instabilities initially occur at wavevector k∗(ϵ,θ)k^*(\epsilon,\theta), and the component of k∗k^* along the average direction of the flux lines, kzk_z, is always finite. As the instability occurs at finite kzk_z the dependence of the cutoff on kzk_z is important, and we have used a cutoff suggested by Sudb\ospace and Brandt. The instabilities only occur for values of the anisotropy ϵ\epsilon appropriate to a material like BSCCO, and not for anisotropies more appropriate to YBCO. The lower critical field Hc1(ϕ)H_{c_1}(\phi) is calculated as a function of the angle ϕ\phi at which the applied field is tilted away from the crystal axis. The presence of kinks in Hc1(ϕ)H_{c_1}(\phi) is seen to be related to instabilities in the equilibrium flux line structure.Comment: Extensively revised paper, with modified analysis of elastic instabilities. Calculation of the lower critical field is included, and the presence of kinks in Hc1H_{c_1} is seen to be related to the elastic instabilities. 29 pages including 16 figures, LaTeX with epsf styl

    Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    Get PDF
    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle

    On the extreme period change of the RR Lyrae variable BE Dor

    Get PDF
    BE Dor is a 15th magnitude first-overtone RR Lyrae variable star in the foreground of the Large Magellanic Cloud, located at about 8.7+/-3.3 kpc from the Sun. Previous investigations have revealed a cyclic period modulation with a period of 8 yr that is associated with a very stable light curve shape. To review and update our knowledge of the seemingly pure phase modulation, we collected all photometric data from the literature and extracted the light curves from all TESS Full Frame Image observations of the star. We extend the time base of earlier studies with another ~10 yrs, supplemented with new spectroscopic observations, and uncover further hints on the true physical nature of this intriguing pulsating star

    Constraining fundamental constants of physics with quasar absorption line systems

    Full text link
    We summarize the attempts by our group and others to derive constraints on variations of fundamental constants over cosmic time using quasar absorption lines. Most upper limits reside in the range 0.5-1.5x10-5 at the 3sigma level over a redshift range of approximately 0.5-2.5 for the fine-structure constant, alpha, the proton-to-electron mass ratio, mu, and a combination of the proton gyromagnetic factor and the two previous constants, gp(alpha^2/mu)^nu, for only one claimed variation of alpha. It is therefore very important to perform new measurements to improve the sensitivity of the numerous methods to at least <0.1x10-5 which should be possible in the next few years. Future instrumentations on ELTs in the optical and/or ALMA, EVLA and SKA pathfinders in the radio will undoutedly boost this field by allowing to reach much better signal-to-noise ratios at higher spectral resolution and to perform measurements on molecules in the ISM of high redshift galaxies.Comment: 11 pages, 3 figure

    3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum

    Full text link
    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. We employed STEREO/COR1 data obtained during a deep minimum of solar activity in February 2008 (Carrington rotation CR 2066) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 Rsun using a tomography method. With this, we qualitatively deduced structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in the 195 A band obtained by tomography for the same CR. A global 3D MHD model of the solar corona was used to relate the reconstructed 3D density and emissivity to open/closed magnetic field structures. We show that the density maximum locations can serve as an indicator of current sheet position, while the locations of the density gradient maximum can be a reliable indicator of coronal hole boundaries. We find that the magnetic field configuration during CR 2066 has a tendency to become radially open at heliocentric distances greater than 2.5 Rsun. We also find that the potential field model with a fixed source surface (PFSS) is inconsistent with the boundaries between the regions with open and closed magnetic field structures. This indicates that the assumption of the potential nature of the coronal global magnetic field is not satisfied even during the deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.Comment: Published in "Solar Physics

    The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow

    Get PDF
    Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron’s lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiment and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry
    • …
    corecore